

A Data-Driven Approach to Increasing Margin and Improving Care

Dr. Jamie McGlothlin

Introduction

RSM Introductions

Jamie McGlothlin

Director | Dallas, Texas

Health Care Analytics National Lead
jamie.mcglothlin@rsmus.com

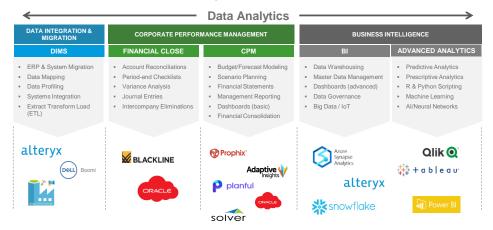
+1 469 995 5171

Jamie provides health care analytics for health systems to drive performance improvement in clinical quality, patient safety, operational efficiency and cost reduction.

- PhD in computer science
- 30 years experience, 11 years in health care analytics consulting
- 13 peer-reviewed research publications in leading health care conferences
- Millions of \$ in ROI generated for health care clients

wisconsin chapter

About RSM and our Healthcare Practice


An integrated approach enables us to bring a diverse range of experience to the table CONSUMERISM MERGERS AND ACQUISITIONS INTEGRATED CARE PROFILE TO ANALOGEMENT System and process evaluation, implementation and optimization - Patent according - Patent according - Patent according - Construction and optimization - Patent according - Construction according - Constr

RSM Background: Data Analytics and **Example Solutions**

wisconsin chapter

RSM Health Care Data Analytics: Approach

- Data-driven
- Use data to choose opportunities
- Augment not replace
- Leverage EMR and existing data warehouses and solutions
- Use the client's tools
- Tool agnostic

- No new silos
- Clients have too many tools and too much data already
- Time to Value
- Short term ROI, Long term sustainability
- Solutions build on each other

MULTI-PHASED AGILE **APPROACH**

- ✓ Deliver short term return on investment
- ✓ Design data solutions which build a long-term foundation reusable for many analytics

LEVERAGE & AUGMENT EXISTING SOLUTIONS

- ✓ Utilize your data warehouse and business intelligence tools
- √ Leverage your EMR (Epic, Cerner, Meditech)

INTEGRATE SOURCES & ELIMINATE SILOS

- ✓ Join EMR data with other sources such as patient experience, cost, registries
- ✓ Create a single version of the truth, an enterprise analytics data source


PROVIDE INTUITIVE & INTERACTIVE VISUALIZATIONS

- ✓ Consistent look and feel
- √ Reduce learning curve
- ✓ Tool agnostic but we have deep experience with Tableau, PowerBI and Olik

Key Challenges in the Healthcare Industry

hfma wisconsin chapter

challenges? My Scheduling requires a lot of Patient and Physician Engagement manual intervention My EHR does not have a Patient Portal solution I would like to have Coordinated Care an AI chat bot on I need to have an integrated my website to guide and Telehealth Solution engage patients Operational Efficiency I need timely **Data Insights** to make informed decisions Digital I would like to have automated outreach for my patients for follow up's

What are organizations doing to address these

Transformation Resource Management

Access to Care

I need better collaboration and coordination between my physicians and staff Improved Quality of Care

I need to consolidate information from various sources for better patient management

staffing

I am having a resource shortage, and need to be more efficient with

Increasing Margin

- Increase Revenue
 - > Do More
 - Marketing Analytics Care Gaps Referrals Management
 - > Capture More Revenue
 - Registration/Verification Clinical Documentation Denials Accounts Receivable
- Reduce Cost
 - Reduce LOS Optimize Staffing Manage Utilization Supply Chain Automation
- · Be More Efficient
 - Patient Movement Scheduling Productivity Surgical Efficiency Automation
- · Do Better
 - Reduce Complications Readmissions Mortality Patient Experience

wisconsin chapter

Agenda

Increase Revenue

- · Marketing Analytics
- Care Gaps
- Denials

Reducing Cost

- Length of Stay
- Efficiency
- Care Paths
- Process Intelligence
 Staffing Optimization
- Utilization

Doing Better

- Doing Detter
- Quality Patient Experience

Getting Started

- Assessments
- Contact Info

Marketing Analytics

wisconsin chapter

Marketing Analytics

- · What providers should I hire? Or collaborate with?
- · Should I build an ambulatory surgical center?
- · Where should I invest?
- Should I buy an orthopedic surgery group?

To answer these types of questions, we leverage claims data

- ➤ For patients in my geography who go to other health systems, what specialists are they seeing? What procedures?
- When my doctors refer to other providers, what specialists do they refer to?
- ➤ How many orthopedic surgeries are performed in my area? What ancillary services are received?

Demo

Care Gaps

Care Gaps: How Do We Identify Patients' Needs?

Scheduling	Cancelled appointments
Orders	Labs, images, treatment which was ordered but not performed
Wellness	Best practice preventive care which is overdue
Chronic disease	Best practice preventive care/evaluation/treatment which is overdue
Care path	Care path recommended treatment is not performed
Risk analysis	Patient is in danger of negative event

How Do We Engage the Patient?

CASE STUDY:

COPD population health

PROBLEM	GOAL	APPROACH	RESULTS
Pediatric COPD patients frequent emergency room for asthma attacks or other flare ups	Improve chronic disease management for COPD population to reduce acute events	Combine EMR data with claims data from payors Identify care gaps Medication adherence (inhalers) Regular wellness visits Diagnostic tests (spirometry) Patient outreach	Reduced avoidable ER visits by 27%

Can also be applied to any chronic disease with preventive care recommendations, including:

- Coronary Artery Disease
- Depression

wisconsin chapter

CASE STUDY:

Congenital Heart Defects (CHD)

PROBLEM	GOAL	APPROACH	RESULTS
Patients born with heart defects often do not follow-up after diagnosis or surgical repair	Improve care and increase revenue by identifying CHD patients overdue for follow-up and reach out to them	Identify forgotten CHD patients mine data including STS Registry, echocardiograms, diagnosis and billing history Classify CHD patients by diagnosis and repair status and clinic/provider Prioritize Enable Follow-up	> 14,000 patients identified > 1,000 follow-ups scheduled > 300 interventions ordered > \$7million revenue

- PUBLISHED:

 A Data Mining Tool and Process for Congenital Heart Defect Management in American Medical Informatics Association

 System to Identify, Classify and Manage Patients with Structural Heart Defects in Quality and Productivity Research Conference 2019

Can also be applied to:

- Any long-term chronic disease where patients may be overdue for assessment
- Adult structural heart defects

Demo

wisconsin chapter

Supervised Learning for CHD

 Supervised learning is an approach to creating artificial intelligence, where the program is given labeled input data and the expected output results.

Supervised learning can be used to improve algorithms, such as the CHD use case

- Design workflows for following up identified patients
- Allow providers to review the patient charts, prioritize and assign follow-up dates
- For patients who come to cardiology follow-ups, track whether further intervention was ordered
- Reprioritize identified patients based on learning feedback from #2 (how soon the chosen follow-up date was) and #3

Denials

Demo

<u>Denials tool helps health care systems improve revenue cycle efforts (rsmus.com)</u>

Reducing Length of Stay

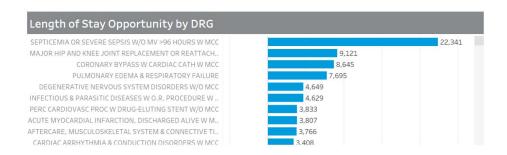
wisconsin chapter

Reducing Length of Stay

Length of stay is the biggest factor for inpatient cost.

There are two fundamental ways to reduce LOS

- 1. Be more efficient
 - Reduce Wait Times (ED boarder, PACU boarder, Discharge)
- 2. Cure patients faster
 - Disease Care Paths
 Reduce Complications


The first step is identify opportunities

- What diseases have greatest length of stay opportunity?
- > What units or processes have inefficiencies?
- What complications are affecting length of stay?

Demo

Efficiency

Efficiency and Patient Movement

- Track all patient movements
- Forecast expected patient movements
- Measure patient movement time
 - By origination, target, day, time, service
- Identify delays and patterns
- Causal analysis: What is causing delay?
 - Lack of capacity?
 - Waiting on another event?
 - Process?

wisconsin chapter

Use Cases

Discharges

· Order wheelchairs and walkers prior to discharge order

ED

- · Improve sepsis care by creating ED lab
- Reduce overflow by predicting volumes 72 hours ahead

Admissions

- · Predict capacity issues ahead of time
- Reduce number of people waiting for a bed from 78 to 24 a day

ICU

- Reduce number of patients waiting for ICU bed by 33%
- Create capacity by designing ICU observation area

Transfers

Reduce transfer cancellation rate by 40%

Digital Twin

• Use discrete event simulation to test what-if scenarios and optimize resource allocation

Case Study: Predicting ED Arrivals and Occupancy

<u>PROBLEM:</u> Emergency Department overfills causing long delays and emergency procedures to create occupancy

GOAL: Predict high occupancy in the emergency room to allow mitigation efforts

APPROACH:

- Obtain historical data for emergency room patients
- 2. Augment data with local weather, holidays and events data
- 3. Predict ED arrivals
- · Evaluate and choose features and algorithms, train and test
- Chosen features: day of week, time of day, date, temperature, relationship to holidays
- 4. Predict ED length of stay for patients in the ED using statistics

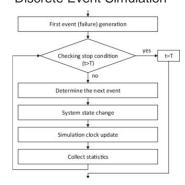
Based on partial information from: service, date, time, diagnosis, ED events

5. Predict future occupancy

This is a calculation using predicted ED arrivals, current occupancy and predicted ED length of stay for current patients

RESULTS:

Able to predict overflow as Yellow, Orange or Red (previous was just red) Alerts up to 96 hours ahead 78% accuracy at 72 hours



wisconsin chapter

Discrete Event Simulation

Discrete Event Simulation

- Simulation: the process of mimicking the behavior of real systems
- · Why simulate?
 - To perform "what if" analyses...
 - Without impacting current operations
 - · At lower cost, in less time
 - If process is too complex
 - Over many scenarios

Case Study: Digital Twin

- PROBLEM: Adding resources or demand in one area of a hospital can cause bottlenecks in other areas.
- GOAL: Analyze resource constraints and what-if scenarios to predict bottlenecks, occupancy and length of stay. Use this analysis to optimize resource allocation

APPROACH:

- 1. Map the resources (beds, imaging machines, etc)
- Fill in what each resource can support (patient type, movement) through data profiling and manual review
- 3. Extract the clinical treatment plan from historical encounters
- Randomly push patients/treatment plans through the hospital to test resource constraint usage, bottle necks, throughput
- 5. Allow resources to be edited to test what if scenarios

PUBLISHED:

Predicting Hospital Capacity and Efficiency in 11th International Conference on Health Informatics

Can be applied to:

- Beds
- Staffing
- Imaging resources
- Clinics
- Operating Rooms

wisconsin chapter

Surgical Efficiency

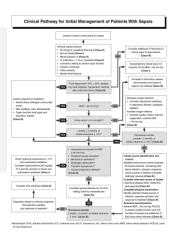
The perioperative suite is one of the busiest areas of the hospital, generates the most revenue and incurs the highest costs. Therefore, throughput and efficiency are vitally important.

SOME OF THE IMPORTANT KPIS TO TRACK EFFICIENCY INCLUDE:

- ✓ On-time starts
- √ Cancellations
- ✓ Add-ons
- ✓ Turnover and turnaround times
- ✓ PACU boarding times
- ✓ Case duration accuracy

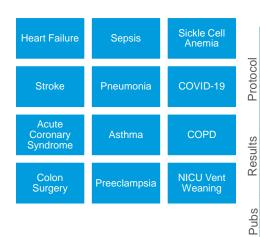
Through analytics we can monitor the efficiency and also looks for causes of inefficiencies.

Demo


Care Paths

Standardized Care Paths

- Best practice care pathways can be found as flow charts and decision points in literature.
- Pathways are defined for both acute encounters and chronic disease treatment.
- Standardized analytics apply across all of the care pathways.
- These processes can be implemented and tracked and measured using standardized technology and process intelligence engines
- PUBLISHED:
- Accelerating Analytics for Clinical Pathways to Drive Cost Reduction and Quality Improvement in IEEE International Conference on Information Reuse and Integration (IRI)



wisconsin chapter

Inpatient Quality: Target Analytics by Care Path

Significant improvement achieved with second iteration

Use Case: Congestive Heart Failure

- Identification
 chief complaint, temperature, blood pressure, pulse
 Evaluation
- blood labs, EKG, chest x-ray, BNP
- 3. Treatment
- Diuretics, oxygenation, weight management
- 4. Follow up
- ↓ LOS 1.5 days
- ↓ Direct cost 16%
- Readmission 22%
 Mortality 60%
- ↓ Wortality 60%
- Improving Patient Care Through Analytics in ISCRI
- Accelerating Analytics for Clinical Pathways to Drive Cost Reduction and Quality Improvement in IEEE IRI

Process Intelligence

wisconsin chapter

What is Process Intelligence?

Process Intelligence platform designated to empower business users to understand, optimize, monitor and predict clinical process of any type,

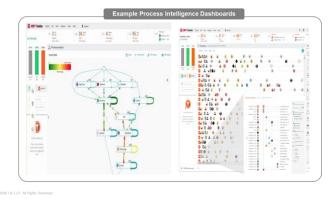
Discovery & Mapping

- Mine event streams from multiple sources, such as NetSuite, for organizations
- Generate a real-time interactive
 "as is" view of the business process

Analysis & Organization

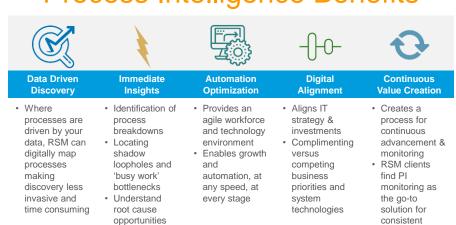
- Analyze complete business processes to find root cause of problems
- Data visualization to discover patterns and insights to better customer experience •

Prediction & Forecasting


- Apply advanced artificial intelligence and machine learning to predict and forecast processes into the future
- Perform cost analysis
- Optimize business operations through real-time monitoring

Process Intelligence Use Cases for Health Care

- **Patient Movement**
- **Emergency Department Flow**
- Care Paths


hfma

wisconsin chapter

value creation without the overhead

Process Intelligence Benefits

Staffing Optimization

wisconsin chapter

Optimize Staffing

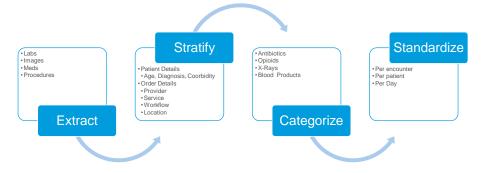
Challenges

- · Shortage of nurses
- · Increased compensation
- · Travel and nurses are expensive
- · Nurses are overworked
- · Volatility in sick calls

Solutions

- Combine EMR data with scheduling, time & attendance and HR
- · Forecast nursing needs more accurately
- · Schedule nurses more optimally
- · Improve nursing retention

Utilization



Reduce Clinical Variation, Save On Costs: DO **MORE WITH LESS**

Unwarranted clinical variation refers to medical practice pattern variation that cannot be explained by illness, medical need, or the dictates of evidence-based medicine. It is one of the causes of low value care often ignored by health systems.

Our challenge is to identify clinical variation and analyze if it is warranted.

CASE STUDY:

Congestive Heart Failure (CHF)

GOAL	APPROACH	RESULTS
Optimize CHF order set	 Analyze all orders utilizing the CHF orderset Analyze all orders for CHF patients which do not utilize the CHF Orderset 	As part of this analysis, we learned that a full narcotics screen was being ordered for 95% of CHF patients. Our data showed no clinical usage of the results of this lab, and we then verified this with providers. The cost of the narcotics screen was \$309. We removed the narcotics screen from the default list of orders in the CHF orderset.

Can also be applied to: Any orders

wisconsin chapter

CASE STUDY:

POKE-R

PROBLEM	GOAL	APPROACH	RESULTS
PICU patients receive lots of "pokes," increasing cost, reducing patient experience and causing hospital acquired infections	Provide information to providers to allow reduction of poke	Define a poke Identify which orders count as "pokes" including blood labs, IV medications, radiology and invasive procedures. Present poke information to providers – including:	12.5% reduction in pokes 5 year savings \$11,058,085 in 26 bed PICU

- PUBLISHED:

 Avoiding Pain and Unnecessary Interventions and Reducing Cost in the PICU in Critical Care Medicine

 Poke-R- Using Analytics to Reduce Patient Harm in 10th International Conference on Health Informatics

Can also be applied to other ICUs including:

- NICU
- SICU

23

CASE STUDY: **Blood Utilization**

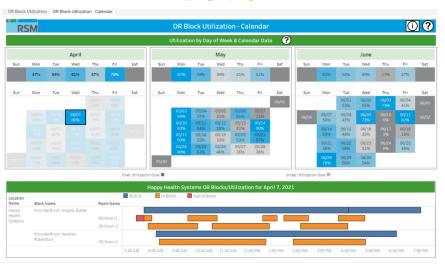
PROBLEM	GOAL	APPROACH	RESULTS
Patients sometimes receive blood transfusions when not clinically required. This causes adverse outcomes.	Reduce unnecessary red blood cell transfusions, improve outcomes, reduce cost	Evaluate the clinical necessity of blood transfusions based on hemoglobin, base deficit, blood pressure, scvO2, lactate, blood loss, diagnosis Analyze blood wastage and returns Provide information for provider evaluation Use supervised learning to adjust thresholds based on provider evaluations	 \$3.3 million annual savings 23% fewer units 46% fewer non- indicated units

<u>PUBLISHED</u>: Reducing Red Blood Cell Transfusions in *International Conference* on *Information Technology in Bio- and Medical Informatics (ITBAM)*

Can also be applied to other products including:

- Plasma
- Platelets

wisconsin chapter


CASE STUDY: Operating Room Utilization

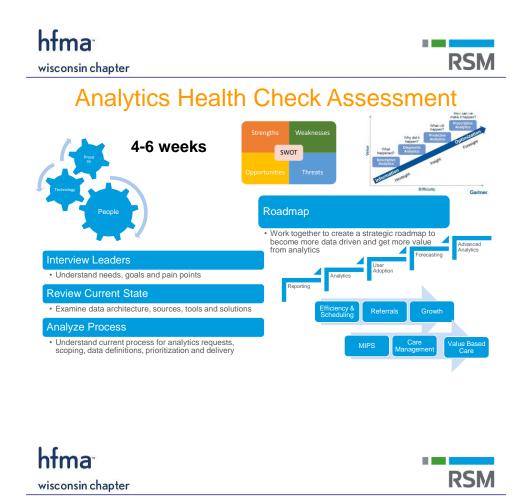
PROBLEM	GOAL	APPROACH	RESULTS
PROBLEM	GOAL	APPROACH	RESULIS
Operating rooms are sometimes empty and sometimes overbooked and open after hours. Some surgeons do not have enough operating room time available and others need more time. Disruption from COVID-19 has magnified these issues	Increase the amount of the operating room is full and decrease the amount of time the operating room is staffed and empty. Optimize block allocations to the changing needs of surgeon groups.	 Track room utilization by hour to optimized staffed hours and volume. Analyze anesthesia usage and out-of-room staff utilization across surgical and procedural suites to monitor resource constraints. Analyze service and surgeon block utilization, including: block utilization, block releases, overbooks, unblocked utilization, 	12% higher service block utilization 29% fewer empty staffed rooms 25% lower out of block minutes Can also be applied to: Endoscopy Cath Lab
		scheduling patterns	
			 Electrophysiology Interventional Radiol Complex Imaging

Demo

Patient Experience

Patient Experience

- Most hospitals and providers survey patients and track overall scores
- What is causing patient experience scores to be high or low?


Joining EMR data with patient experience data can allow us to dig into questions by the following to really provide insight into what makes patients have a better experience:

Getting Started

Questions & Answers

Let's Connect!

Jamie McGlothlin

Jamie.mcglothlin@rsmus.com www.linkedin.com/in/jamie-mcglothlin